Abstract

Three different types of polyester—polyether copolymers were synthesized by PEG initiated ring-opening polymerization of ϵ-caprolactone: an A-B and an A-B-A block copolymer and an (A) 2-B star copolymer, where A is a poly(ϵ-caprolactone) (PCL) and B is a poly(ethylene glycol) (PEG) block. The monomer to initiator ratio was varied to obtain copolymers with different PCL block length and weight fraction ranging from 68–85 wt%. These PCL-PEG copolymers were characterized by means of g.p.c., n.m.r., d.s.c. and WAXD. In all types of copolymer the PCL constituent crystallizes first when cooling from the molten state. This leads to significant undercooling and imperfect crystallization of the PEG block. The mutual influence between PCL and PEG constituents is significantly stronger in the A-B-A block copolymers, having a central PEG block, and in the (A) 2-B star copolymers. The effect of the PCL/PEG ratio on the melting and crystallization behaviour of the copolymers was investigated. The results obtained demonstrate that the thermal properties and morphology are affected significantly by the chain length of the PCL and PEG constituents in the copolymers and by the type of copolymers (sequence of the different blocks).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.