Abstract
Poly(1,3-phenyl octanoate) (polyHPOA) was prepared by melt and solution polycondensation methods from 8-(3-hydroxyphenyl)octanoic acid (HPOA), a novel monomer useful as a chain disruptor in liquid crystalline copolyesters. The melt polycondensation technique gave a polyester of higher inherent viscosity (0.80 dL/g in p-chlorophenol) than that (0.75 and 0.56 dL/g, respectively, for the Ogata method and thionyl chloride/pyridine method in the same solvent) of solution techniques. The solubility of the polyesters was limited to strongly acidic and polar solvents. The polyester was characterized by elemental analysis, IR spectroscopy, WAXD, TGA, isothermal TGA and DTA. x-ray diffraction pattern of the polyesters indicated that it is amorphous in nature. TGA of the polyesters gave a thermal stability of 470°C in nitrogen atmosphere at 50% decomposition. The available thermal data suggest that the polyester undergoes thermal decomposition by a pyrolytic cleavage involving the ester linkage with the formation of ketene and phenol ended groups as intermediates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.