Abstract

Siliconized epoxy matrix resin was developed by reacting diglycidyl ethers of bisphenol A (DGEBA) type epoxy resin with hydroxyl terminated polydimethylsiloxane (silicone) modifier, using γ-aminopropyltriethoxysilane crosslinker and dibutyltindilaurate catalyst. The siliconized epoxy resin was cured with 4, 4-diaminodiphenylmethane (DDM), 1,6-hexanediamine (HDA), and bis (4-aminophenyl) phenylphosphate (BAPP). The BAPP cured epoxy and siliconized epoxy resins exhibit better flame-retardant behaviour than DDM and HDA cured resins. The thermal stability and flame-retardant property of the cured epoxy resins were studied by thermal gravimetric analysis (TGA) and limiting oxygen index (LOI). The glass transition temperatures ( T g) were measured by differential scanning calorimetry (DSC) and the surface morphology was studied by scanning electron microscopy (SEM). The heat deflection temperature (HDT) and moisture absorption studies were carried out as per standard testing procedure. The thermal stability and flame-retardant properties of the cured epoxy resins were improved by the incorporation of both silicone and phosphorus moieties. The synergistic effect of silicone and phosphorus enhanced the limiting oxygen index values, which was observed for siliconized epoxy resins cured with phosphorus containing diamine compound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.