Abstract

AbstractPoly(N‐substituted urethane)s with an alkyl or ligo(ethylene oxide) monomethyl ether side chain were synthesized by the reaction operating in the following two‐step process: first, by metalation of the starting polymer with potassium tertiary butoxide (t‐BuOK) and then by treatment of the obtained urethane polyanion with tosylate in dimethyl sulfoxide. The thermal properties of poly(ethylene oxide) poly(N‐substituted urethane) (N‐sub PEOPU) were investigated in view of the N‐substitution degree and properties of the substituent. The chemical structures were characterized by Fourier transform infrared, 1H NMR, and 13C NMR spectroscopies. DSC and thermogravimetric analysis (TGA) were used to investigate the thermal properties of N‐sub PEOPUs. As the degree of N‐methylation increased, the glass‐transition temperature (Tg) of the N‐sub PEOPUs linearly decreased from 6 to −29 °C, and the weight‐loss temperature of 5% (T) from TGA in air increased from 278 to 360 °C. In the fully N‐substituted PEOPUs, the behavior of the thermal decomposition of the PEOPU that was processed in two stages was changed to one‐step decomposition in the temperature range of 360–440 °C. The Tg was shifted to a lower temperature with an increasing length of the substituent in N‐sub PEOPU. Improvement of the thermal stability by N‐substitution was more significant in N‐alkyl PEOPU than in N‐ethoxylate PEOPU. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 4129–4138, 2001

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.