Abstract
AbstractTrimeric betaine surfactants tri[(N‐alkyl‐N‐ethyl‐N‐sodium carboxymethyl)‐2‐ammonium bromide ethylene] amines were prepared with raw materials containing tris(2‐aminoethyl) amine, alkyloyl chloride, lithium aluminium hydride, sodium chloroacetate, and bromoethane by alkylation, Hoffman degradation reaction, carboxymethylation and quaternary amination reaction. The chemical structures of the prepared compounds were confirmed by FTIR, 1H NMR, MS and elemental analysis. With the increasing length of the carbon chain, the values of their critical micelle concentration initially decreased. Surface active properties of these compounds were superior to general carboxylate surfactants C10H21CHN+(CH3)2COONa. The minimum cross‐sectional area per surfactant molecule (Amin), standard Gibbs free energy adsorption (ΔGads) and standard Gibbs free energy micellization (ΔGmic) are notably influenced by the chain length n, and the trimeric betaine surfactants have greater ability to adsorb at the air/water interface than form micelles in solution. The efficiency of adsorption at the water/air interface (pC20) of these surfactants increased with the increasing length of the alkyl chain. Their foaming properties, wetting ability of a felt chip, and lime‐soap dispersing ability were also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.