Abstract

Monosubstituted derivatives of γ-cyclodextrin (γ-CD) are suitable building blocks for supramolecular polymers, and can also serve as precursors for the synthesis of other regioselectively monosubstituted γ-CD derivatives. We prepared a set of monosubstituted 2I-O-, 3I-O-, and 6I-O-(3-(naphthalen-2-yl)prop-2-en-1-yl) derivatives of γ-CD using two different methods. A key step of the first synthetic procedure is a cross-metathesis between previously described regioisomers of mono-O-allyl derivatives of γ-CD and 2-vinylnaphthalene which gives yields of about 16–25% (2–5% starting from γ-CD). To increase the overall yields, we have developed another method, based on a direct alkylation of γ-CD with 3-(naphthalen-2-yl)allyl chloride as the alkylating reagent. Highly regioselective reaction conditions, which differ for each regioisomer in a used base, gave the monosubstituted isomers in yields between 12–19%. Supramolecular properties of these derivatives were studied by DLS, ITC, NMR, and Cryo-TEM.

Highlights

  • Cyclodextrins [1] (CDs) are cyclic oligosaccharides with a cone-shaped cavity formed by α-1,4-linked D-glucopyranose units

  • We turned our focus to developing another method for the preparation of naphthylallyl derivatives, which is based on a direct alkylation of γ-Cyclodextrins [1] (CDs) with 2-(3-chloroprop-1-enyl)naphthalene

  • The method originally expected to be used for the preparation of the regioisomers based on the metathesis of allyl-γ-CD derivatives proved to be inferior, giving about a 6 times lower overall yield than the mononaphthylallylation procedure

Read more

Summary

Introduction

Cyclodextrins [1] (CDs) are cyclic oligosaccharides with a cone-shaped cavity formed by α-1,4-linked D-glucopyranose units. The most widely used CDs are α-, β-, and γ-CD with 6, 7 or 8 glucose units, respectively. Both chemically modified and native CDs are used in numerous applications, e.g., in separation methods [2,3] or in the pharmaceutical industry [4,5].

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.