Abstract

Methods of organic and carbon xerogels synthesis based on the use of condensed tannins isolated from abies bark were developed. Organic gels were synthesized by sol-gel condensation of tannins with formaldehyde in a solution of ethanol in the presence of catalysts (NaOH or HCl). The final gelation products were dried by alternating low (-18 – -40 °C) and room temperature to obtain tanninformaldehyde (TF) xerogels. FTIR study indicates that the formation of xerogels was accompanied by crosslinking reactions mainly due to the formation of carbon-carbon and alkyl ether bonds. Using the method of thermogravimetry, it was found that organic TF xerogels are thermally stable up to a temperature of 295 °C and they are resistant to ignition in air at temperatures up to 600 °C and can be used as thermo- and fire-retardant materials. Carbon tannin-formaldehyde xerogels were obtained by carbonization of organic xerogels at 800 °C in an argon atmosphere. The porous structure and surface morphology of organic and carbon xerogels was studied by BET- and SEM–methods. A significant development of the specific surface area (to 483–524 m2/g)as a result of the organic xerogels carbonization was established. Using SEM, it was shown that in carbon gels a spatially cross-linked structure of polymer chains consisting of 5-10 nmsized globule particles forming nanometer-sized pores is retained

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call