Abstract

Palladium and rhodium are known to be partly miscible metals. In present work, the peculiarities of coordination compound [Pd(NH3)4]3[Rh(NO2)6]2 decomposition with formation of nanosized solid solutions under different atmospheres were studied by means of thermal gravimetry. Formation of alloy nanoparticles were confirmed by powder X-ray diffraction analysis, scanning and transmission electron microscopies. A bimetallic Pd-Rh/alumina catalyst was prepared by incipient wetness impregnation using coordination compound [Pd(NH3)4]3[Rh(NO2)6]2 as a precursor. Monometallic reference samples were obtained using [Pd(NH3)4](NO3)2 and Na3[Rh(NO2)6], correspondingly. Catalytic performance and stability of the catalysts were examined in a model reaction of CO oxidation in a prompt thermal aging regime. The environment of precursor decomposition was shown to affect noticeably both the initial activity and stability of the samples in the studied reaction. Reductive atmosphere in comparison with inert and oxidative ones facilitates the formation of the smallest active component species, which demonstrate highest initial activity but worst stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.