Abstract

The results of pioneering studies on preparation of highly transparent Fe2+ : MgAl2O4 ceramics from powders synthesised in a laser torch are presented. This ceramics with a high transparency in the near-IR spectral region is synthesised for the first time at a low temperature (1300°C) and a short (1 h) sintering time. It is found that, as the iron oxide concentration increases from 0.1 to 5 wt %, the concentration of Fe3+ ions in samples decreases to zero. It is shown that the samples of Fe2+ : MgAl2O4 ceramics contain the second phase (MgO)0.91(FeO)0.09 with a concentration of several percent, which considerably decreases transmission coefficient T in the visible region. At the same time, the T coefficient increases with increasing wavelength λ due to a decrease in Rayleigh scattering and almost reaches the theoretical value 85.6 % for λ = 4 μm. The absorption cross section σ for Fe2+ ions at λ = 2 μm is determined to be (1.66 ± 0.14) × 10−20 cm2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.