Abstract

Semiconducting CdSe and indium doped CdSe (In: CdSe) thin films have been synthesized on stainless steel and fluorine doped tin oxide coated glass substrates in an aqueous medium using a potentiostatic mode of electrodeposition. The doping concentration of indium has been optimized to 0.15 vol% using the reliable photoelectrochemical technique. To study the effect of indium doping these films are characterized using X-ray diffraction, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, elemental mapping, Raman spectroscopy, contact angle measurement and UV–visible spectrophotometry techniques. CdSe and In: CdSe thin films are low crystalline with a cubic crystal structure. The valence states of CdSe and In: CdSe thin films are analyzed by means of XPS. Undoped CdSe thin film shows fiberlike morphology, which transforms into a beautiful web of nanofibers upon doping. The Elemental composition of both films analyzed by means of energy dispersive X-ray spectroscopy. Raman studies show transverse optical and longitudinal optical modes of phonon. Indium doping improves the hydrophilic nature of CdSe photoanode. The optical band gap (direct) found to be decreased from 2.02 to 1.67 eV upon indium doping. Both films are photoactive in nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.