Abstract

Carbon monoxide (CO) has recently been identified as a gaseous signaling molecule that exerts various salutary effects in mammalian pathophysiology. Photoactive metal carbonyl complexes (photoCORMs) are ideal exogenous candidates for more controllable and site-specific CO delivery compared to gaseous CO. Along this line, our group has been engaged for the past few years in developing group-7-based photoCORMs towards the efficient eradication of various malignant cells. Moreover, several such complexes can be tracked within cancerous cells by virtue of their luminescence. The inherent luminecscent nature of some photoCORMs and the change in emission wavelength upon CO release also provide a covenient means to track the entry of the prodrug and, in some cases, both the entry and CO release from the prodrug. In continuation of the research circumscribing the development of trackable photoCORMs and also to graft such molecules covalently to conventional delivery vehicles, we report herein the synthesis and structures of three rhenium carbonyl complexes, namely, fac-tricarbonyl[2-(pyridin-2-yl)-1,3-benzothiazole-κ2N,N'](4-vinylpyridine-κN)rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C12H8N2S)(CO)3](CF3SO3), (1), fac-tricarbonyl[2-(quinolin-2-yl)-1,3-benzothiazole-κ2N,N'](4-vinylpyridine-κN)rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C16H10N2S)(CO)3](CF3SO3), (2), and fac-tricarbonyl[1,10-phenanthroline-κ2N,N'](4-vinylpyridine-κN)rhenium(I) trifluoromethanesulfonate, [Re(C7H7N)(C12H8N2)(CO)3](CF3SO3), (3). In all three complexes, the ReI center resides in a distorted octahedral coordination environment. These complexes exhibit CO release upon exposure to low-power UV light. The apparent CO release rates of the complexes have been measured to assess their comparative CO-donating capacity. The three complexes are highly luminescent and this in turn provides a convenient way to track the entry of the prodrug molecules within biological targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.