Abstract

Tellurium-bearing acyclic Schiff bases, 2,6-bis({N-[2-(phenyltellurato)ethyl]}benzimidoyl)-4-methylphenol (HL3 ) and 2,6-bis({N-[3-(phenyltellurato)propyl]}benzimidoyl)-4-methylphenol (HL4 ) of the Te2N2O type have been prepared by condensation of 4-methyl-2,6-dibenzoylphenol (mdbpH) with the appropriate phenyltellurato(alkyl)amine. HL3 and HL4 have been characterized by mass spectrometry, IR, electronic and 1H-NMR spectroscopies and cyclic voltammetry. Their reactions with Cu(II) acetate monohydrate in a 2 : 1 molar ratio in methanol yield [(C6H2(O)(Me){(C6H5)C=N(CH2)nTe(C6H5)}{(C6H5)C=O})2Cu] (3 (n = 2), 4 (n = 3)) as suggested by analytical and spectroscopic data and single crystal X-ray crystallography of 3. In both complexes, one arm of the ligand undergoes hydrolysis at the C=N position and two molecules of the partially hydrolyzed ligand coordinate to Cu(II) through imido nitrogen and the phenolic oxygen. The telluriums do not form part of the copper(II) distorted square planar coordination sphere which has a trans-CuN2O2 core. Electrochemical studies of 3 and 4 indicate quasi-reversible reductions (E°′ = −1.113 V (3) and −1.149 V (4)) corresponding to the reduction of copper(II) to copper(I). The interactions of 3 and 4 with calf thymus DNA, investigated by spectrophotometry and cyclic voltammetry, indicate that 3 and 4 bind to DNA via intercalation, and the binding affinity of 3 is lower than that of its selenium analog.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.