Abstract

Synthetic methods have been developed which yield large single crystals and highly crystalline phase-pure microporous layered SnS-n materials. This allows study of the structure–property–function relations of these materials. The tin sulfide layer of the SnS-1 structure type contains hexagonally shaped 24-atom rings which are constituted by six Sn3S4 broken-cube cluster building units, linked together by double bridge Sn(µ-S)2Sn sulfur bonds. The SnS-3 structure type contains elliptically shaped 32-atom rings which are also constructed from six Sn3S4 broken-cube clusters. However, they are linked by double bridge Sn(µ-S)2Sn sulfur bonds as well as tetrahedral edge-bridging Sn(µ-S2SnS2)Sn spacer units. The SnS-1 structure type [A2Sn3S7 ] was obtained in the presence of A+=Et4N+ , DABCOH+ (protonated 1,8-diazabicyclooctane), and a mixed template system of NH4+ /Et4N+ , while the SnS-3 structure type [A2Sn4S9 ] emerged in the presence of A+=Prn4N+ and Bun4N+ . Various SnS-1 and SnS-3 structures are examined and compared in relation to the size/shape of constituent template cations. A particular kind of structure-directing function was observed, that is, larger template molecules create larger void spaces within and between the tin sulfide sheets. Unique framework flexibility was discovered for both structure types. In order to accommodate the size/shape changes of templates, the flexible porous tin(iv) sulfide layers are able to undergo a certain degree of elastic deformation to alter the architecture of void spaces within and between the layers, rather than forming a completely new porous structure type. This is believed to be responsible for the relatively small number of structure types so far discovered for tin(iv) sulfide-based microporous layered materials compared to the myriad of three-dimensional open-framework structure types found for the zeolites and aluminophosphates. The observed differences among the various SnS-1 or SnS-3 structures is significant and has resulted in distinct adsorption behavior towards guest molecules. The TPA-SnS-3 framework is also found to be pressure sensitive. This all bodes well for envisaged chemical sensor applications for this class of porous materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.