Abstract

AbstractA novel 3‐dimensional potassium supermolecular compound [K(HDNR)(H2DNR)(H2O)]n (H2DNR2,4‐dinitro resorcinol) was synthesized and characterized by elemental analysis and FT‐IR spectroscopy. The crystal structure investigated by X‐ray single crystal diffraction shows that [K(HDNR)(H2DNR)(H2O)]n crystallizes with a monoclinic unit cell in the space group P2(1)/c with unit cell dimensions of a=17.648(5) Å, b=12.527(3) Å, c=7.735(2) Å, β=94.33(2)°, V=1705.00(73) Å3, Z=4. The structure was refined to the final R=0.0670 and wR=0.0722 for 2022 observed reflections with I>2σ(I). In the compound, potassium cation is assembled into one‐dimensional chains along c‐axis through oxygen atoms from water molecules, and the chains were connected by the bridged HDNR− anions to form a two‐dimensional net structure. The two‐dimensional nets constructed a three‐dimensional supramolecular architecture via intermolecular hydrogen bonds and N–O···π interaction. Density functional theory (DFT) B3LYP was employed to optimize the structure and calculate energies for three tautomers of HDNR− univalent anion. Three stable tautomers were located. It was found that the structure (I) with O(1) losing hydrogen atom is more stable than the structure (II) also with O(1) losing hydrogen atom and the structure (III) with O(4) losing hydrogen atom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.