Abstract

Fibroblast growth factor receptor 3 (FGFR3) is an attractive therapeutic target for the treatment of patients with bladder cancer harboring genetic alterations in FGFR3. We identified pyrimidine derivative 20b, which induced tumor regression following oral administration to a bladder cancer xenograft mouse model. Compound 20b was discovered by optimizing lead compound 1, which we reported previously. Specifically, reducing the molecular size of the substituent at the 4-position and replacing the linker of the 5-position in the pyrimidine scaffold resulted in an increase in systemic exposure. Furthermore, introduction of two fluorine atoms into the 3,5-dimethoxyphenyl ring enhanced FGFR3 inhibitory activity. Molecular dynamics (MD) simulation of 20b suggested that the fluorine atom interacts with the main chain NH moiety of Asp635 via a hydrogen bond.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.