Abstract

We have synthesized core/shell/shell (CSS) CdSe/ZnSe/ZnS quantum dots (QDs) and investigated their exciton dynamics using time correlated single photon counting (TCSPC). The unique synthetic method combines hot injection with successive injection of precursors in one pot. Transmission electron microscopy (TEM) shows that CSS QDs were 6 ± 2 nm in diameter. The elemental composition, determined by energy dispersive X-ray spectroscopy, was 3.3% cadmium, 8.6% selenium, 42.3% sulfur, and 45.8% zinc by mole. Photoluminescence spectroscopy (PL) showed that the PL quantum yield is increased from 0.9% for CdSe to 25% for CSS. Global fitting was used for the analysis of exciton dynamics for CdSe, CdSe/ZnS core/shell, and CSS QDs. The decays of the PL spectra for CdSe and CdSe/ZnS were fit with triple exponentials with lifetimes of 0.7, 8, and 30 ns and 0.7, 10, and 30 ns respectively, while the CSS spectrum was fit with a double exponential with lifetimes of 12 and 30 ns. We attribute the 0.7 ns component to nonradiative recombination through dangling bonds at the CdSe surface or at crystal lattice dislocations at the CdSe/ZnS interface. This study clearly demonstrates that the CSS approach can be used to substantially improve the optical properties of QDs desired for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.