Abstract

Benzothiazole derivatives are known for anti-TB properties. Based on the known anti-TB benzothiazole pharmacophore, in the present study, we described the synthesis, structural elucidation, and anti-tubercular screening of a series of novel benzothiazole (BNTZ) derivatives (BNTZ 1-7 and BNTZ 8-13). The study aims to carry out the development of benzothiazole based anti-TB compounds. Title compounds are synthesized by microwave method and purified by column chromatography. Characterization of the compounds is achieved by FT-IR, NMR (1H and 13C), LCMS and elemental analysis. Screening of test compounds for anti-TB activity is achieved by Resazurin Microplate Assay (REMA) Plate method. It was noted that the BNTZ compound with an isoquinoline nucleus (BNTZ 9) exhibited remarkable anti-tubercular activity at 8 µg/mL against both the susceptible strain H37Rv and the multi-drug resistant tuberculosis strains of Mycobacterium tuberculosis. On the other hand, the BNTZ compound with a naphthalene nucleus (BNTZ 2) revealed anti-tubercular activity at 6 µg/mL and 11 µg/mL against both the susceptible strain H37Rv and the multi-drug resistant tuberculosis strains of M. tuberculosis, respectively. One of the selected BNTZ derivatives BNTZ 13 was used for single crystal X-ray studies. To identify the appropriate target for potent BNTZ compounds from the series, molecular modeling studies revealed the multiple strong binding of several BNTZs with mycobacterium lysine-ɛ-aminotransferase and decaprenyl-phosphoryl-β-D-ribose 2'-oxidase. The interaction is derived by forming favorable hydrogen bonds and stacking interactions. This new class of BNTZ compounds gave promising anti-tubercular actions in the low micromolar range, and can be further optimized on a structural basis to develop promising, novel, BNTZ pharmacophore-based anti-tubercular drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call