Abstract

The Ca2Mn1Re1O6 double perovskite has been prepared in polycrystalline form by using the encapsulated quartz tube method. The partial oxygen pressure inside the quartz tube revealed this to be a crucial synthesis parameter for the production of a single structural phase sample. This parameter was controlled using the ratio between ReO2 and ReO3 content and the filling factor parameter (ratio between mass and total inner volume of the quartz tube). The morphology and chemical composition was investigated by scanning electron microscopy and energy dispersive X-ray spectroscopy. The crystal structure parameters were determined by analysis of the synchrotron high-resolution X-ray powder diffraction pattern. The analysis indicates that the sample is an ideal single-phase compound with a monoclinic crystal structure (space group P2(1)/n) with a = 5.44445(2) Å; b = 5.63957(3) Å; c = 7.77524(3) Å; and β = 90.18(1)º. Computer simulations were performed considering two cation valence configurations, namely, (i) Mn2+Re6+ or (ii) Mn3+Re5+, for the Ca2Mn1Re1O6 compound. XANES analysis measurements indicated +2.3 for the average valence of Mn (a mixture of Mn2+ and Mn3+) and +5.7 for the effective valence of Re (an intermediate valence between Re4+ (ReO2) and Re6+ (ReO3)). As a summary, we concluded there is a mixed valence configuration for Mn and Re in Ca2Mn1Re1O6 , taken into account the oxygen content of 6.0±0.1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.