Abstract

The reaction in water of M(II) [M = Ni or Mn] with 1,10-phenanthroline (phen) and sodium pyrophosphate (Na4P2O7) in a 2:4:1 stoichiometry resulted in the crystallization of dinuclear complexes featuring the heretofore rare bridging pyrophosphate. Single-crystal X-ray diffraction studies revealed the complexes to be {[(phen)2Ni]2(micro-P2O7)} . 27H2O (1) and {[(phen)2Mn]2(micro-P2O7)} . 13H2O (2) where the asymmetric M(phen)2 units are bridged by bis-bidentate pyrophosphate, each metal ion exhibiting a distorted octahedral geometry. The bridging pyrophosphate places adjacent metal centers at 5.031 A in 1 and 4.700 A in 2, and its conformation also gives rise to an intramolecular pi-pi interaction between two adjacent phen ligands. Intermolecular pi-pi interactions between phen ligands from adjacent dinuclear complexes create an ornate 3D network in 1, whereas a 2D sheet results in 2. The hydrophilic nature of the pyrophosphate ligand leads to heavy hydration with the potential solvent-accessible area for 1 and 2 accounting for 45.7% and 26.4% of their unit cell volumes, respectively. Variable-temperature magnetic susceptibility measurements on polycrystalline samples of 1 and 2 revealed net weak intramolecular antiferromagnetic coupling between metal centers in both compounds with J = -3.77 cm(-1) in 1 and J = -0.88 cm(-1) in 2, the Hamiltonian being defined as H = -JSA.SB. The ability of the bis-bidentate pyrophosphate to mediate magnetic interactions between divalent first row transition metal ions is discussed bearing in mind the number and nature of the interacting magnetic orbitals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call