Abstract

Sodium tungstate reacted with tetramethyl- and tetrabutyl-phosphonium bromide in presence of hydrochloric acid to afford two new phosphonium hexatungstate compounds ((CH3)4P)2W6O19, 1, and ((CH3CH2CH2CH2)4P)2W6O19, 2, respectively. Under similar conditions, sodium tungstate reacted with methyltriphenyl-, allyltriphenyl-, butyltriphenyl- and benzyltriphenyl-phosphonium bromides to yield four new phosphonium hexatungstate compounds (CH3Ph3P)2W6O19, 3, (CH2CHCH2Ph3P)2W6O19, 4, (CH3CH2CH2CH2Ph3P)2W6O19, 5, and (C6H5CH2Ph3P)2W6O19, 6, respectively. All six compounds appeared to be stable in air, and were structurally characterized by a combination of FTIR, elemental analyses, and single-crystal X-ray diffraction analyses. The steric effect of the phosphonium cation was investigated and found to cause no significant change on the average bond distances of the hexatungstate anion. The crystal structure analyses of these compounds showed that hexatungstate anions were isolated and the distance between the anions increases with increase in the bulkiness of the surrounding phosphonium cations. Moreover, thermal stability and heat absorption of all six compounds were evaluated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.