Abstract

Enzymatic isothermal rolling circle amplification (RCA) produces long concatemeric single-stranded DNA (ssDNA) molecules if a small circular ssDNA molecule is applied as the template. A method is presented here in which the RCA reaction is carried out in a flow-through system, starting from isolated surface-tethered DNA primers. This approach combines gentle fluidic handling of the single-stranded RCA products, such as staining or stretching via a receding meniscus, with the option of simultaneous (fluorescence) microscopic observation. It is shown that the stretched and surface-attached RCA products are accessible for hybridization of complementary oligonucleotides, which demonstrates their addressability by complementary base pairing. The long RCA products should be well suited to bridge the gap between biomolecular nanoscale building-blocks and structures at the micro- and macroscale, especially at the single-molecule level presented here.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.