Abstract
Kinetics and reaction mechanisms governing inversion of the tetrahedral configuration at the metal center in the series ofbis-chelate Zn(II) complexes of 3,2-, 1,2-, and 2,1-oxy(mercapto)naphthaldimines, respectively4–6, have been studied with the use of dynamic1H NMR spectroscopy. A polytopal rearrangement of the diagonal twist type has been found to be an energetically preferable pathway of the inversion reaction for complexes4 and5 with a ZnN2O2 coordination site, whereas the inversion reaction for complexes with a ZnN2S2 coordination site occurs by an intramolecular dissociation-recombination pathway that involves cleavage of a Zn-N coordination bond. In the case of complexes6, the inversion reaction is governed mainly by intramolecular degenerate ligand exchange reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.