Abstract
[Pd{(C,N)–C6H4CH2NH(Et) (Qu)] (2) and [Pd{(C,N)–C6H4CH2NH(Et) (Nar)] (3) (Qu = Quercetin, Nar = Naringin) mononuclear palladium (II) complexes have been synthesized and characterized using elemental analysis, IR and electronic spectroscopy. The interaction of the prepared complexes with calf thymus DNA and bovine serum albumin (BSA), monitored by UV–visible and fluorescence titrations, respectively, have been carried out to better understand the mode of their action under biological conditions. Intercalative binding mode between the complexes and DNA is suggested by the binding constant (Kb) values of 2.5 × 106 and 3.2 × 106 for complexes 2 and 3, respectively. In particular, the in vitro cytotoxicity of the complexes on two cancer cells lines (bladder carcinoma TCC and breast cancer MCF7) showed that the compounds had broad spectrum, anti-cancer activity with low IC50 values and the order of in vitro anticancer activities is consistent with the DNA-binding affinities. In the meantime, the quenching of tryptophan emission with the addition of complexes using BSA as a model protein indicated the protein binding ability. The quenching mechanisms of BSA by the complexes were static processes, according to the results obtained. The competitive binding using Warfarin, Digoxin and Ibuprofen site markers, which contain definite biding sites, demonstrated that the complexes bind to site I on BSA. Ultimately, the binding sites of DNA and BSA with the complexes have been determined by molecular modelling studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.