Abstract

The synthesis and isolation of low coordinate methylenebis-(N-DIPP-imidazole-2-ylidene)iron((II))hydrides, (((DIPP)C)(2)CH(2))FeH(2-y)I(y) ((DIPP = 2,6-di-isopropylphenyl, y = 1 or 0), was complicated by competitive reactions with solvent, rapid reductive elimination of H(2) and/or dissociation of the bis-N-heterocyclic carbene ligand. Addition of KH to (((DIPP)C)(2)CH(2))FeI(2) in THF/haloalkane mixtures enabled a short lived mono-hydride to be trapped by reaction with CH(2)Cl(2) or cyclo-heptylbromide to form (((DIPP)C)(2)CH(2))FeI(X) (X = Cl or Br, respectively). Toluene coordination stabilises iron-mono hydride complexes as (((DIPP)C)(2)CH(2))Fe(II)H{η(6)-(toluene)} species, which can be isolated in low yield from combination of borohydride salts and (((DIPP)C)(2)CH(2))FeI(2) in toluene, including an imidazole C4 deprotonated carbene-borane, methylene(N-DIPP-imidazole-2-ylidene)(N-DIPP-4-triethyl-borane-imidazole-2-ylidene)](hydrido)(η(6)-toluene)iron. In the absence of toluene, or at short reaction times compounds with empirical formula (((DIPP)C)(2)CH(2))Fe(H)(HB(R)(3))·LiI (R = Et or sec-Bu) that function as a masked Fe((II))-dihydride are isolated. Whilst (((DIPP)C)(2)CH(2))Fe(H)(HB(R)(3))·LiI was stable for days in Et(2)O, more polar solvents (MeCN, THF) led to formation of the carbene borane adducts (((DIPP)C)(2)CH(2))(BR(3))(2). The addition of CO or cyclo-heptylbromide to (((DIPP)C)(2)CH(2))Fe(H)(HB(R)(3))·LiI formed (((DIPP)C)(2)CH(2))Fe(CO)(3) and (((DIPP)C)(2)CH(2))FeBr(2), respectively with BR(3) evolved from both reactions as a by-product.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call