Abstract

A series of star polymers consisting of poly(tert-butyl acrylate) arms and an ethyleneglycol dimethacrylate (EGDMA) microgel core were synthesized using anionic polymerization. The effect of various parameters (precursor length, ratio [[EGDMA]/[Initiator], reaction time, and overall concentrations) on the average number of arms was investigated. Molecular weights were determined using GPC coupled with an online viscometer and MALLS. The exponents for the relation between intrinsic viscosity or radius of gyration and molecular weight, respectively, are extremely low, indicating that the dimensions of the star polymers only slightly increase with the number of arms. After a certain number of arms is reached the intrinsic viscosity even decreases with molecular weight. Computer simulations for star polymers were carried out where the radius of gyration was calculated as a function of the number of arms. The results are in good agreement with the experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.