Abstract

ZnO nanoparticles of size 2–10 nm were generated in situ from the single source precursor [2-(methoxyimino)propanoato]zinc(II), ([CH3ONCCH3COO]2Zn·2H2O) onto multiwalled carbon nanotubes (MWCNTs) at low temperature (150 °C). The degree of ZnO coverage on the MWCNTs can be tuned and is dependent upon the ZnO precursor concentration. A plausible growth mechanism based on surface saturation of as-deposited precursor on the MWCNTs has been proposed. The X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) indicate the nano-crystalline nature of the ZnO particles. Scanning electron microscopy (SEM) and TEM investigations of the ZnO deposition revealed a dense and homogeneous deposition along the complete periphery of the MWCNT. The ZnO/MWCNT nanocomposite hybrid materials were further electronically characterized by micro-Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectroscopy (UV-Vis) as well as room temperature photoluminescence (PL). The nanostructured ZnO/MWCNT composite shows a better sensing performance when compared to bare MWCNTs in the detection of low CO levels (20–200 ppm).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.