Abstract

In this study, novel fluorescent low molecular-weight organogelators are derived from diphenyl ethers and substituted with para-alkoxy groups of different aliphatic chain lengths. The present research promotes the preparation of innovative nanofeather-like assemblies from the synthesized diphenyl ether-derived organogelators. The gelation performance of the prepared alkoxy-substituted diphenyl ethers was reported. The synthesis procedure was achieved by using a base-catalyzed reaction of hydroxyl-substituted diphenyl with various alcohols of different aliphatic chain lengths. The chemical structures of the synthesized diphenyl ether derivatives were studied by 1H/13C NMR and infrared spectroscopy. Fluorescence and UV–vis absorption spectral analyses showed solvatochromism. The diphenyl ether derivatives with longer alkoxy terminal substituents showed enhanced thermoreversible gelation activity as compared to the diphenyl ether derivatives with shorter alkoxy terminal substituents. The morphological properties of the self-assembled diphenyl ethers were studied by transmission electron microscopy and scanning electron microscopy, which showed supramolecular architectures of highly ordered nanofeathers, enforced by van der Waals interactions and π-stacks. Depending on the length of the aliphatic tail, different morphologies were detected, including nanofeathers, nanofibers, and nanosheets. The antimicrobial and cytotoxic properties of the prepared diphenyl ether-derived organogelators were examined to confirm their possible use in various fields like drug delivery systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call