Abstract

The NCN-pincer Pd-complex-bound norvalines Boc-D/L-[PdCl(dpb)]Nva-OMe (1) were synthesized in multigram quantities. The molecular structure and absolute configuration of 1 were unequivocally determined by single-crystal X-ray structure analysis. The robustness of 1 under acidic/basic conditions provides a wide range of N-/C-terminus convertibility based on the related synthetic transformations. Installation of a variety of functional groups into the N-/C-terminus of 1 was readily carried out through N-Boc- or C-methyl ester deprotection and subsequent condensations with carboxylic acids, R(1)COOH, or amines, R(2)NH2 , to give the corresponding N-/C-functionalized norvalines R(1)-D/L-[PdCl(dpb)]Nva-R(2) 2-9. The dipeptide bearing two Pd units 10 was successfully synthesized through the condensation of C-free 1 with N-free 1. The robustness of these Pd-bound norvalines was adequately demonstrated by the preservation of the optical purity and Pd unit during the synthetic transformations. The lipophilic Pd-bound norvalines L-2, Boc-L-[PdCl(dpb)]Nva-NH-n-C11H23, and L-4, n-C4H9CO-L-[PdCl(dpb)]Nva-NH-n-C11H23, self-assembled in aromatic solvents to afford supramolecular gels. The assembled structures in a thermodynamically stable single crystal of L-2 and kinetically stable supramolecular aggregates of L-2 were precisely elucidated by cryo-TEM, WAX, SAXS, UV/Vis, IR analyses, and single-crystal X-ray crystallography. An antiparallel β-sheet-type aggregate consisting of an infinite one-dimensional hydrogen-bonding network of amide groups and π-stacking of PdCl(dpb) moieties was observed in the supramolecular gel fiber of L-2, even though discrete dimers are assembled through hydrogen bonding in the thermodynamically stable single crystal of L-2. The disparate DSC profiles of the single crystal and xerogel of L-2 indicate different thermodynamics of the molecular assembly process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.