Abstract

A series of branched polymers, consisting of a poly(ethylene glycol) (PEG) core and lipophilic peripheral dendrons, were synthesized and their self-assembly into reverse micelles studied toward the ultimate goal of carrier-mediated transdermal drug delivery. More specifically, this investigation systematically explores the structure-property contributions arising from location and extent of branching by varying the number of branch points at the core and the generation of dendrons at the polar/nonpolar interface. For branching at the core, PEGs were selected with one, two or four arms, with one terminal functionality per arm. For peripheral branching, end groups were modified with polyester dendrons (of dendritic generations 0, 1, and 2) for each of the three cores. Finally, lauric acid (LA) was used to esterify the periphery, yielding a library of branched, amphiphilic polymers. Characterization of these materials via MALDI-TOF MS, GPC and NMR confirmed their exceptionally well-defined structure. Furthermore, atomic force microscopy (AFM) and dynamic light scattering (DLS) confirmed these polymers' abilities to make discrete aggregates. As expected, increased multiplicity of branching resulted in more compact aggregates; however, the location of branching (core vs periphery) did not seem as important in defining aggregate size as the extent of branching. Finally, computational modeling of the branched amphiphile series was explored to elucidate the macromolecular interactions governing self-assembly in these systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.