Abstract

Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucrose induced accumulation of CGA correlated with the increased expression of phenylalanine ammonia-lyase (PAL) rather than HQT. Transient expression of the potato MYB transcription factor StAN1 (anthocyanin 1) in tobacco increased CGA. RNAi suppression of HQT resulted in over a 90% reduction in CGA and resulted in early flowering. The reduction in total phenolics and antioxidant capacity was less than the reduction in CGA, suggesting flux was rerouted into other phenylpropanoids. Network analysis showed distinct patterns in different organs, with anthocyanins and phenolic acids showing negative correlations in leaves and flowers and positive in tubers. Some flavonols increased in flowers, but not in leaves or tubers. Anthocyanins increased in flowers and showed a trend to increase in leaves, but not tubers. HQT suppression increased biosynthesis of caffeoyl polyamines, some of which are not previously reported in potato. Decreased PAL expression and enzyme activity was observed in HQT suppressed lines, suggesting the existence of a regulatory loop between CGA and PAL. Electrophysiology detected no effect of CGA suppression on potato psyllid feeding. Collectively, this research showed that CGA in potatoes is synthesized through HQT and HQT suppression altered phenotype and redirected phenylpropanoid flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.