Abstract

While the multifaceted reactivity of organic isocyanides has been extensively demonstrated, that of their organometallic analogue, isocyanoferrocene (FcNC; Fc = ferrocenyl), has not yet been adequately explored. This contribution describes the syntheses of novel chelating Pd(II) imidoyl complexes, [(YCH2C6H4C(NFc)-κ2Y,C)PdCl(PR3)], by insertion of FcNC into the Pd-C bond of cyclopalladated precursors [(YCH2C6H4-κ2Y,C)PdCl(PR3)] (Y = Me2N, MeS, R = Ph, Me). The imidoyl complexes underwent facile alkylation with [Me3O][BF4] to produce the cationic aminocarbene complexes [{YCH2C6H4C(N(Me)Fc)-κ2Y,C}PdCl(PR3)][BF4]. All compounds were fully characterised using a combination of spectroscopic methods (NMR, FTIR and ESI MS), cyclic voltammetry and single-crystal X-ray crystallography. In addition, DFT calculations were used to describe the bonding in the two compound families. Analyses with intrinsic bond orbitals (IBOs) and the quantum theory of atoms in molecules (QTAIM) consistently pointed to the transformation of an X-type imidoyl C-ligand (σ-organyl) into an L-type carbene donor upon alkylation, which has only a minor structural consequence. Also reported is the unexpected conversion of the imidoyl complex [(Me2NCH2C6H4C(NFc)-κ2N,C)PdCl(PPh3)] into (Z)-2,2-dimethyl-1-(ferrocenylimino)isoindolin-2-ium tetrafluoroborate as a reductive elimination product, which was induced by Lewis and Brønsted acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.