Abstract

The iridium(III) hydride compound [IrH{κ3C,P,P'-(SiNP-H)}(CNtBu)2][PF6] (1PF6) was obtained by reaction of [Ir(SiNP)(cod)][PF6] with CNtBu as the result of the intramolecular oxidative addition of the SiCH2-H bond to iridium(I) [SiNP = Si(CH3)2{N(4-tolyl)PPh2}2, SiNP-H = CH2Si(CH3){N(4-tolyl)PPh2}2]. The mechanism of the reaction was investigated by NMR spectroscopy and DFT calculations showing that the pentacoordinated intermediate [Ir(SiNP)(cod)(CNtBu)][PF6] (2PF6) forms in the first place and that further reacts with CNtBu, affording the square planar intermediate [Ir(SiNP)(CNtBu)2][PF6] (3PF6) that finally undergoes the intramolecular oxidative addition of the SiCH2-H bond. The reactivity of 1PF6 was investigated. On one hand, the reaction of 1PF6 with N-chlorosuccinimide or N-bromosuccinimide provides the haloderivatives [IrX{κ3C,P,P'-(SiNP-H)}(CNtBu)2][PF6] (X = Cl, 4PF6; Br, 5PF6), and the reaction of 5PF6 with AgPF6 in the presence of acetonitrile affords the solvato species [Ir{κ3C,P,P'-(SiNP-H)}(CH3CN)(CNtBu)2]2+ (62+) isolated as the hexafluorophosphate salt. On the other hand, the reaction of 1PF6 with HBF4 gives the iridium(III) compound [IrH(CH2SiF2CH3)(HNP)2(CNtBu)2][BF4] (7BF4) as the result of the formal addition of hydrogen fluoride to the Si-N bonds of 1+ [HNP = HN(4-tolyl)PPh2]. A similar outcome was observed in the reaction of 1PF6 with CF3COOH rendering 7PO2F2. In this case the intermediate [IrH{κ2C,P-CH2SiMeFN(4-tolyl)PPh2}(HNP)(CNtBu)2]+ (8+) was observed and characterised in situ by NMR spectroscopy. DFT calculations suggests that the reaction goes through the sequential protonation of the nitrogen atom of the Si-N-P moiety followed by the formal addition of fluoride ion to silicon. Also, the crystal structures of SiNP, 1PF6, 4PF6 and 7BF4 have been determined by X-ray diffraction measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.