Abstract

The synthesis, structures, and reactivity of the first unsaturated AlSi2 three-membered ring systems were described. Reactions of dilithiodisilene [(NHB)LiSi═SiLi(NHB)] (1, NHB = diazaborolyl) with aluminum halides AlCl3, Ar(SiMe3)NAlCl2 (Ar = 2,6-iPr2C6H3), Cp*AlBr2 (Cp* = C5Me5), and TipAlBr2·Et2O (Tip = 2,4,6-iPr3C6H2) led to the formation of AlSi2 three-membered ring species, solvated (NHBSi)2AlCl(OEt2) (2) and solvent-free (NHBSi)2AlN(SiMe3) Ar (3), (NHBSi)2AlCp* (4), and (NHBSi)2AlTip (5), in good yields. X-ray diffraction studies and DFT calculations disclosed delocalized AlSi2 2π electron systems. Methanolysis of 4a resulted in cleavage of the Al-Si σ and Si-Si π bonds, giving trihydrodisilane (NHB)H(MeO)SiSiH2 (NHB) (6). Reaction of 4b with 4 equiv of N2O and H2C═CH2 resulted in the insertion of four oxygen atoms and four H2C═CH2 π bonds into all of the Al-Si and Si-Si bonds, yielding the O- and CH2CH2-bridged polycyclic species 7 and 8, demonstrating the synergistic reactivity of the Al-Si and Si-Si bonds in the AlSi2 ring system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call