Abstract

Fe3O4-based Cu nanostructured electrodes for Li ion batteries are fabricated by a two-step electrochemical process, and characterized with scanning electron microscopy, X-ray diffraction, and electrochemical experiments. It is found that the electrochemical performance is closely related to the Fe3O4 morphology. The nanostructured electrodes with 1min Fe3O4 deposition exhibit a large specific discharge capacity, i.e. 1342.23mAhg−1 in the first cycle and 1003.94mAhg−1 in the 34th. After extended Fe3O4 electroplating, Fe3O4 particles will fill the spaces between the Cu nanorods and coalesce on the top of the Cu nanorod arrays, which is detrimental to achieve high specific reversible capacities and good rate capability. Moreover, the nanostructured electrodes demonstrate significantly enhanced cycling performance due to the introduction of Cu nanorod arrays as the current collector, especially as compared to the planar electrodes where Fe3O4 is electrodeposited directly onto planar Cu surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.