Abstract

Reported here are synthetic studies probing highly reduced iron centers in an encumbering tetraisocyano ligand environment. Treatment of FeCl2 with sodium amalgam in the presence of 2 equiv of the m-terphenyl isocyanide CNAr(Mes2) (Ar(Mes2) = 2,6-(2,4,6-Me3C6H2)2C6H3) produces the disodium tetraisocyanoferrate Na2[Fe(CNAr(Mes2))4]. Structural characterization of Na2[Fe(CNAr(Mes2))4] revealed a tight ion pair, with the Fe center adopting a tetrahedral coordination geometry consistent with a d(10) metal center. Attempts to disrupt the cation-anion contacts in Na2[Fe(CNAr(Mes2))4] with cation-sequestration reagents lead to decomposition, except for the case of 18-crown-6, where a mononuclear complex featuring a dianionic 1-azabenz[b]azulene ligand was isolated in low yield. Formation of this 1-azabenz[b]azulene is rationalized to proceed by an aza-Büchner ring expansion of a CNAr(Mes2) ligand mediated by a coordinatively unsaturated Fe center. Disodium tetraisocyanoferrate Na2[Fe(CNAr(Mes2))4] is readily protonated by trimethylsilanol (HOSiMe3) to produce the monohydride ferrate salt, Na[HFe(CNAr(Mes2))4], the anionic portion of which serves as an isocyano analogue of the hydrido-tetracarbonyl metalate [HFe(CO)4](-). Treatment of Na[HFe(CNAr(Mes2))4] with methyl triflate (MeOTf; OTf = [O3SCF3](-)) at low temperature in the presence of dinitrogen yields the five-coordinate Fe(0) complex Fe(N2)(CNAr(Mes2))4. The formation of Fe(N2)(CNAr(Mes2))4 in this reaction is consistent with the intermediacy of the neutral tetraisocyanide Fe(CNAr(Mes2))4. The decomposition of Fe(N2)(CNAr(Mes2))4 to the dimeric complex [Fe(η(6)-(Mes)-μ(2)-C-CNAr(Mes))]2 and a seven-membered cyclic imine derived from a CNAr(Mes2) ligand is presented and provides insight into the ability of CNAr(Mes2) and related m-terphenyl isocyanides to stabilize zerovalent four-coordinate iron complexes in a strongly π-acidic ligand field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call