Abstract
A novel 2'-O,4'-C-bridged nucleic acid, 3,4-dihydro-2H-pyran bridge moiety (DpNA), with a dioxabicyclo[3.2.1]oct-3-ene ring was designed. Construction of the dihydropyran bridge was achieved by dehydration of a six-membered hemiacetal ring, and the DpNA monomer was synthesized in 10 steps from 5-methyluridine (total yield 9%). The synthesized DpNA monomer was incorporated into oligonucleotides to examine the properties of the modified oligonucleotides. The DpNA-modified oligonucleotides possessed high affinity toward ssRNA and were more resistant to nucleases compared to the corresponding natural oligonucleotide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.