Abstract

The acrylamide copolymer with acrylamide as its main monomer is a modified polyacrylamide. In addition, the acrylamide copolymer is generally to dissolve or swell in water and can be used as thickener, dispersant, flocculant and so on. Therefore, using Acrylamide AM, 2-acrylamide-2-methyl propanesulfonic acid AMPS, dimethyldodecyl (2-acrylamidoethyl) ammoniumbromide AQ12 and vinyltriethoxysilane VTEO as raw materials so that a series of four-membered acrylamide copolymers are prepared in aqueous solution polymerization. The amphoteric structure in the polymer has a unique anti-polyelectrolyte behavior when it is electrically neutral, which can significantly improve the salt resistance of the aqueous polymer. In addition, the hydrolysis of the vinyltriethoxysilane containing silicon structure by hydrophobic association can improve the temperature resistance of the polymer. The optimal reaction conditions were determined by orthogonal experiment: the reaction temperature was 10 °C; the initiator concentration was 0.05 mol%; the monomer concentration was 25 wt% and the pH was 7. Properties of polymer solution indicated that the series of tetra-copolymer possessed salt-tolerant and heat-resisting performances. As an oil displacing agent, it can significantly improve the efficiency of oil displacement, and particularly highlights the effect of 4-member copolymer as an oil displacing agent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call