Abstract
Rhodium(III) porphyrin complexes, [Rh(4-PyT(3)P)Cl](4) (1) and [Rh(2-PytB(3)P)Cl](2) (2) (4-PyT(3)P = 5-(4-pyridyl)-10,15,20-tritolylporphyrinato dianion, 2-PytB(3)P = 5-(2-pyridyl)-10,15,20-tri(4-tert-butyl)phenylporphyrinato dianion), were self-assembled and characterized by (1)H nuclear magnetic resonance spectroscopy, infrared spectroscopy, and electron spray ionization-mass spectroscopy methods. The spectroscopic results certified that the rhodium porphyrin complexes 1 and 2 have a cyclic tetrameric structure and a cofacial dimeric structure, respectively. The X-ray structure analysis of 1 confirmed the cyclic structure of the complex. The Soret bands of both oligomers were significantly broadened by excitonic interactions between the porphyrin units, compared to those observed for a corresponding analogue of Rh(TTP)(Py)Cl (TTP = 5,10,15,20-tetratolylporphyrinato dianion, Py = pyridine). Stepwise oxidation of the porphyrin rings in the oligomers was observed by cyclic voltammetry. The oligomers 1 and 2 are very stable in solution, and they slowly undergo reactions with pyridine to give corresponding monomer complexes only at high temperatures (approximately 80 degrees C).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.