Abstract

ABSTRACTThis research shows the development of alternative Cu-based materials for applications where enhanced thermal properties are desired. Cu/AlN composites were fabricated from mixtures of pure Cu and copper plated AlN-Cu composite powders. The ceramic phase was added in amounts of 10, 20 and 30 vol.% and the mixtures sintered by pulsed electric current sintering process (PECS). The results showed that the AlN particles are homogeneously distributed in the copper matrix and that the true contacts between hard particles are reduced because of the deposited copper on their surfaces, improving the connectivity of the matrix phase and bonding at the metal-ceramic interface. The relative density of the Cu/AlN composites was major than 97% in all cases. Thermal conductivity of the composites was high and decreased with the ceramic content from 359 to 194 W/mK, for 10 and 30% AlN, respectively. The coefficient of thermal expansion followed a lineal behavior with temperature and is also reduced with the ceramic content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call