Abstract

AbstractCopolymers were synthesized through the chemically oxidative polymerization of N‐ethylaniline (EA) and aniline (AN) in five acid aqueous media. The polymerization yield, intrinsic viscosity, molecular weight, solubility, solvatochromism, electrical conductivity, and mechanical properties of the copolymer films were systematically studied through changes in the comonomer ratio, polymerization temperature, oxidant, oxidant/monomer ratio, and acid medium. Open‐circuit‐potential and temperature measurements of the polymerization solutions showed that the polymerization rate depended on the EA content, and the polymerization was an exothermic reaction. The resultant copolymers were characterized in detail with IR, ultraviolet–visible, and 1H NMR spectroscopy, gel permeation chromatography, wide‐angle X‐ray diffractometry, and scanning electron microscopy. The reactivity ratios of the monomer pair were calculated from the 1H NMR spectra of the copolymers formed at a low conversion. The polymers exhibited good solubility and interesting solvatochromism in most of the solvents and variable conductivity with the EA/AN ratio and doping state. The conductivity of the HCl‐doped copolymers increased monotonically from 5.61 × 10−7 to 2.55 × 10−1 S/cm with decreasing EA content from 100 to 0 mol % and showed a percolation transition between EA concentrations of 20 and 30 mol %. The EA/AN copolymers also had excellent film formability and flexibility together with high mechanical and oxygen‐enriching properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6109–6124, 2004

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call