Abstract

The synthesis of new side chain cholesteric liquid crystalline elastomers containing the flexible non-mesomorphic crosslinking agent M-1 and the cholesteric monomer M-2 by a one-step hydrosilylation reaction is described. The chemical structures of the obtained monomers and network polymers were confirmed by 1H NMR and FTIR spectroscopy. The mesomorphic properties and phase behavior were investigated by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The glass transition temperatures and isotropic temperatures of the mesomorphic elastomers decreased as the concentration of crosslinking units increased; in the mesomorphic region the liquid crystalline elastomers showed elasticity, reversible phase transitions and Grandjean texture. The flexible crosslinking agent did not disturb the cholesteric structure; moreover, it was beneficial for adjusting the helix of the cholesteric liquid crystalline polymers, and cholesteric elastomers P-6, P-7, show reversible selective reflection of visible light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call