Abstract

Aromatic polyamides were synthesized from 4,5-bis(4-aminophenyl)-2-phenyloxazole (APO) or 4,5-bis[4(4-aminophenoxy)phenyl]-2-phenyloxazole (APPO) containing 2-phenyl-4,5-oxazolediyl units with several aromatic carboxylic dichlorides by a low-temperature solution polycondensation method. The polyamides were obtained quantitatively, and their inherent viscosities ranged from 0.48 to 1.25 dL g−1. The glass transition temperatures (T gs) were displayed between 234 to 311°C, and the residual weight at 600°C (Res.wt600) exceeded 52% in nitrogen atmosphere. The polyamides showed good solubility in several aprotic polar solvents, such as N,N-dimethylacetoamide (DMAc), N-methyl-2-pyrrolidone (NMP), and dimethyl sulfoxide (DMSO). Aromatic polyimides were derived from APO or APPO with aromatic carboxylic dianhydrides through polyamic acids. The inherent viscosities of the polyamic acids, which were 0.53 to 1.02 dL g−1, T gs of the polyimides were observed between 259 to 361°C and their Res.wts600 were above 70%. The polyamides and polyimides were amorphous and afforded thin, flexible and tough films. We also prepared a nanocomposite of the polyamide derived from APPO with organophilic montmorillonite clay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call