Abstract

Two new naphthalene-ring-containing bis(ester-amine)s, 2,3-bis(4-aminobenzoyloxy)naphthalene (p-2) and 2,3-bis(3-aminobenzoyloxy)naphthalene (m-2), were prepared from the condensation of 2,3-dihydroxynaphthalene with 4-nitrobenzoyl chloride and 3-nitrobenzoyl chloride, respectively, followed by catalytic hydrogenation. The novel aromatic poly(ester-amide)s and poly(ester-imide)s having 2,3-linked bis(benzoyloxy)naphthalene units have been synthesized from the polycondensation reactions of bis(ester-amine)s (p-2 and m-2) or an equimolar mixture of 4,4′-oxydianiline and p-2 or m-2 with various aromatic dicarboxylic acids and dianhydrides. The synthesis of the poly(ester-amide)s was achieved by the phosphorylation polyamidation reaction by means of triphenyl phosphate, and the synthesis of the poly(ester-imide)s included ring-opening polyaddition to give poly(amic acid)s followed by chemical imidization to polyimides. Most of the poly(ester-amide)s were readily soluble in various organic solvents. Six poly(ester-amide)s and two poly(ester-imide)s derived from less rigid diacids and dianhydrides, respectively, were amorphous and could be solution-cast into transparent and tough films with good mechanical properties. Most of the poly(ester-amide)s displayed discernible glass-transition temperatures (Tgs) between 192 and 223 °C in the DSC traces. All of the poly(ester-imide)s, except for one sample, showed clear Tg values between 225 and 265 °C by DSC. These poly(ester-imide)s showed excellent thermal stability with 10 wt% loss temperatures above 460 °C in nitrogen or air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.