Abstract

A pack cementation process for the co-deposition of Cr, Fe and Al onto open-cell nickel foam was developed. The reticulated open-cell Ni–Cr–Fe–Al foams were annealed to homogenize the material with 18.8wt.% Cr, 11.3wt.% Fe and 7.7wt.% Al. The microstructure and phase composition of the Ni–Cr–Fe–Al foams were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive analysis (EDS). The results show that the coating is uniform and dense along the perimeter of the Ni strut, and consists of three layers: a Cr–Fe outer layer, an inner layer containing mostly Al and a transition zone. After homogenization annealing, the alloyed foams retain the hollow struts structure of the original pure nickel foams and the low relative densities. The Ni–Cr–Fe–Al alloy foams exhibit enhancement in absolute strength as compared to the pure nickel and Ni–35.2Cr foams. Furthermore, the Ni–Cr–Fe–Al alloy foams show excellent oxidation resistance and outperform the chromia-forming Ni–35.2Cr alloy foam after oxidation at 900 and 1000°C, which is mainly due to its high aluminum and chromium content leading to the formation of a continuous and adherent duplex oxide layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.