Abstract

Ethynylphosphonate (EP)-linked thymidine dimers were synthesized via a palladium-catalyzed cross-coupling reaction and successfully incorporated into oligonucleotides. The oligonucleotides containing EP linkages appropriately formed a duplex with their complementary single-stranded RNA (ssRNA) and single-stranded DNA. The oligonucleotides containing both the EP linkages and 2'-O,4'-C-methylene-bridged nucleic acid/locked nucleic acid exhibited strong duplex-forming ability toward the complementary ssRNA. The EP-modified oligonucleotides exhibited higher exonuclease resistances than their natural counterparts. Moreover, one EP modification to a gapmer-type antisense oligonucleotide resulted in a switch of the cleavage site in the target ssRNA. Therefore, the EP modification can be applied for controlling the cleavage site in the RNase H-dependent mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call