Abstract

A novel branched polyether is prepared with 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane as a core, amino groups as backbone, and polypropylene oxide (PPO)–polyethylene oxide (PEO) chains as branches based on phenol-amine resin, propylene oxide (PO), and ethylene oxide (EO). The surface activity is investigated by surface tension measurement at different temperature. The increase in PO/EO ratio or PPO chain lengths improve the surface activity and decrease the critical micelle concentration (cmc) as well as increase the temperature. The addition of inorganic salts causes a slight increase in cmc. The demulsification of water-in-crude-oil (W/O) emulsions, whether from polymer flooding or not, shows that the branched polyether is a good demulsifier to break the W/O emulsions. The stability of W/O emulsion in the presence of polyether shows that the highest water dehydration is not necessarily the highest stability index of W/O emulsion due to the turbidity of separated water. The demulsification process is also observed by microscope. Distribution of the polyether after demulsification is evaluated by partition coefficient at various concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call