Abstract

A wide range of advanced technology for existing and emerging products based on high temperature metal-ceramic composites used in aircrafts, cutting tools, lithium-ion based rechargeable batteries, superconductors, field emission based flat-panel displays, etc. employ micron to submicron sized (0.1–10 microns) particulate precursors in their manufacturing process. Although there has been a significant emphasis given to control of the particle characteristics (shape, size, surface chemistry, adsorption, etc.), relatively little or no attention has been paid to concomitant designing desirable surface and bulk properties at the particulate level, which can ultimately lead to enhanced properties of the product. By attaching atomic to nano-sized inorganic, multi-elemental clusters either in discrete or continuous form onto the surface of the core particles, i.e nano-functionalization of the particulate surface, materials and products with significantly enhanced properties can be obtained. In this paper, we demonstrate the synthesis of artificially structured, nano-functionalized particulate materials with unique optical, cathodoluminescent, superconducting and electrical properties. In this paper, we show the feasibility of the pulsed laser ablation technique to make very thin, uniformly distributed and discrete coatings in particulate systems so that the properties of the core particles can be suitably modified. Experiments were conducted for laser deposition on Al 2O 3, SiO 2, core particles by pulsed excimer laser (wavelength = 248 nm and pulse duration = 25 nanosecond) by irradiation of a Ag and Y 2O 3:Eu 3+ targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.