Abstract

AbstractA series of block copoly(arylene ether)s containing pendant superacid groups were synthesized, and their properties were investigated for fuel cell applications. Two series of telechelic oligomers, iodo‐substituted oligo(arylene ether ketone)s and oligo(arylene ether sulfone)s, were synthesized. The degree of oligomerization and the end groups were controlled by changing the feed ratio of the monomers. The nucleophilic substitution polymerization of the two oligomers provided iodo‐substituted precursor block copolymers. The iodo groups were converted to perfluorosulfonic acid groups via the Ullmann coupling reaction. The high degree of perfluorosulfonation (up to 83%) was achieved by optimizing the reaction conditions. Tough and bendable membranes were prepared by solution casting. The ionomer membranes exhibited characteristic hydrophilic/hydrophobic phase separation with large hydrophilic clusters (ca. 10 nm), which were different from that of our previous random copolymers with similar molecular structure. The block copolymer structure was found to be effective in improving the proton‐conducting behavior of the superacid‐modified poly(arylene ether) ionomer membranes without increasing the ion exchange capacity (IEC). The highest proton conductivity was 0.13 S/cm at 80 °C, 90% relative humidity, for the block copolymer ionomer membrane with IEC = 1.29 mequiv/g. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.