Abstract
Nucleosides and oligonucleotides with an oxygen replaced by sulfur atom are an interesting class of compounds because of their improved stability toward enzymatic cleavage by nucleases. We have synthesized several dinucleotide mRNA cap analogs containing a phosphorothioate moiety in the α, β, or γ position of 5′,5′-triphosphate chain [m7Gp(s)ppG, m7Gpp(s)pG, and m7Gppp(s)G]. These are the first examples of the biologically important 5′mRNA cap analogs containing a phosphorothioate moiety, and these compounds may be useful in a variety of biochemical and biotechnological applications. Incorporation of a sulfur atom in the α or γ position within the dinucleotide cap analog was achieved using PSCl3 in a nucleoside phosphorylation reaction followed by coupling the phosphorothioate of nucleoside with a second nucleotide. Synthesis of cap analogs with the phosphorothioate moiety in β position was performed using an organic phosphorothioate salt in a coupling reaction with an activated nucleotide. The structures of newly synthesized compounds was confirmed using MS and 1H and 31P NMR spectroscopy. We present here the results of preliminary studies on their interaction with translation initiation factor eIF4E and enzymatic hydrolysis with human and nematode DcpS scavengers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.