Abstract

Microscopic and macroscopic SiC-Si3N4 interfacial structures were synthesized and their properties examined. Microscopic interfaces were produced by hot isostatic pressing vapour-liquid-solid SiC whisker-polycrystalline Si3N4 matrix composites without densification aids. Macroscopic interfaces were formed by the chemical vapour deposited Si3N4 coating of large SiC single crystals. The characteristics of these model interfaces were investigated using transmission electron microscopy and indentation fracture. Results showed the microscopic interfaces to contain a small amount of second phase, while the macroscopic interfaces were pristine in nature with no second phase present. Pristine SiC-Si3N4 interfaces were strongly bonded at room temperature, but interfacial strength decreased at elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.